
IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

KNN-DP: HANDLING DATA SKEWNESS IN KNN JOINS

USING MAPREDUCE

1 R. Sandhoshraja, 2 Santhi Baskaran, 3 V. Geetha
1, 2, 3 Department of Information Technology,

1, 2, 3 Pondicherry Engineering College, Puducherry, India.

__

ABSTRACT: The MapReduce programming model has been successfully used for

big data analytics. However, data skewness invariably occurs in big data analytics and

seriously affects efficiency. To overcome the data skewness problem in MapReduce, in the

past proposed a data processing algorithm called kNN-DP with reallocatedfree space partition

technique. The robustness and efficiency of the algorithm were tested on a wide

variety of simulated datasets. The results showed that kNN-DP with Reallocate Free

Space partition technique can prevent data skew in MapReduce efficiently. Data skewness

is not fully rectified. While applying the result of the reallocated free space (in phase-1) as

a input to the proposed algorithm called repartitioning algorithm (PTSH-Partitioning

Turning based Skew Handling), it totally avoid the causes of the skewness. In

comparison with the one-stage partitioning strategy used, PTSH uses a two-stage strategy

and the partition tuning method to disperse key-value pairs in virtual partitions and

recombines each partition in case of data skew. PTSH improves the performance of

MapReduce jobs in comparison with the native Hadoop, Closer, and Locality-aware

and Fairness-aware Key partitioning (LEEN). Even though PTSH is very effective, two-

stage partitioning strategy is overhead. This overhead can be prevented by using spark. The

time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm

using spark.

Key terms: [kNN-DP, Partitioning Turning based Skew Handling, LEEN.]
__

1. INTRODUCTION
The use of big data analytics in E-

commerce offers many attractive

opportunities while posing significant

challenge. The traditional data processing

and analytical algorithms cannot satisfy the

requirements of big electronic gadgets

data and cloud computing. Fortunately,

advances in data management, particularly

such parallel computational models as

MapReduce, can be applied to process and

analyse diverse and large-scale datasets.

However, big data is so large and complex

that it cannot be managed under traditional

methods. For example, when using

association rule mining (ARM) on

MapReduce, algorithms must extract the

necessary information from big data in a

timely manner. MapReduce is a powerful

and cost-effective tool for massively parallel

analytics.

It can distribute data and computational

tasks to thousands of cheap physical nodes,

hence providing massive storage capacity

and parallel computing capabilities.

MapReduce is a programming model that

allows the easy development of scalable

parallel applications to process big data

on large clusters of commodity machines.

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

A MapReduce job typically runs in two

main phases: a map phase and a reduce

phase. In each phase, distributed tasks

process datasets on a cluster of computers.

When a map task is completed, the

reduce tasks are notified to pull newly

available data. This transfer process is

referred to as a shuffle. All map tasks

must be completed before the shuffle part

of the reduce phase to allow the latter

to complete. We consider a case where

computational load is unbalanced among

map tasks or reduce tasks. We call such an

unbalanced situation map skew or reduce

skew, respectively. Skew can lead to longer

job execution times and lower cluster

throughput, thus affecting the performance

of MapReduce.

Kwon [3] analysed the types of skew that

arises in a variety of MapReduce

applications but did not provide a relevant

solution to unbalanced partitioning in the

reduce phase. Ibrahim et al. designed the

LEEN algorithm[5] to determine the

corresponding partition of a map output

based on the frequency of key-value pairs.

When a large amount of data and keys are

unevenly distributed, data skew may occur,

resulting in an unbalanced input of reduce

tasks. Xu et al. [6] focused on resampling

partitioning strategy to deal with

unbalanced partitioning in the reduce

phase. However, when dealing with

massive amounts of data, the sampling

overhead incurred by this strategy is

high and affects the performance of

MapReduce.

Ramakrishna et al. [7] proposed techniques

to split each key with a large record size

into sub keys to allow for a more even

distribution of workload among reducers.

However, it requires waiting until all map

tasks are completed to gather partition size

information before reduce tasks can begin.

Considering this issue, we want to use a two

-stage strategy to divide the map output into

fine-grained partitions and recombine them

based on global output information to

disperse skewed data. In this paper, we

propose a data processing algorithm

called Partition Tuning -based Skew

Handling (PTSH) to address the problem.

First, we first use a virtual partitioning

method to divide the original partitions into

fine-grained partitions and collect real-time

stats regarding the data size of each

partition. Second, the partitioning g

information of the map task is extracted and

the corresponding index sent to the reduce

tasks for repartition.

Finally, the repartitioning process divides

the collected virtual partitions into new

partitions of the same number as the reduce

tasks. The main contributions of the paper

lie on the following:

(1) Based on a two-stage partitioning

strategy, we propose a partition tuning

method to divide skewed partitions into

fine-grained partitions and use a

repartition method to solve the problem of

unbalanced data division. As partitioning is

an NP-hard problem, we propose a

repartition algorithm, which can effectively

balance skewed partitions.

(2) We conducted several experiments on

simulated datasets and real datasets.

Compared with one-stage strategies, the

results showed that our method could

effectively mitigate data skew in

MapReduce jobs and improve efficiency.

(3) A case study of ARM for real healthcare

data was carried out on MapReduce.

Combining an Apriori algorithm and

PTSH, it could balance the data

distribution of reduce tasks and improve

the efficiency of ARM on healthcare data.

2. LITERATURE REVIEW
This section provides the previous

techniques and frameworks. It also provides

the numerous methodologies.

Xujun Zhao, Jifu Zhang and Xiao Qin IEEE

Transaction on parallel and distributed

system. KNN DP Handling Data Skewness

in kNN joins using MapReduce [1] 2017,

Static optimization of the input data

partition can improve the running time in

the presence of skew, caused by uneven

processing times. The optimization time is

short when compared to the actual query

execution time.

Y. Kwon, M. Balazinska, and J. Rolia

International Conference on Management of

Data. SkewTune: Mitigating Skew in

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

MapReduce Applications [7] 2012,

Repartitions the load automatically and

detects the straggler node and tries to

mitigate by allocating the task to the idle

node.

Y. Xun, J. Zhang, and X. QinIEEE

Transaction on Parallel and Distributed

System Fidoop-DP: Data Partitioning in

Frequent Itemset Mining on Hadoop

Clusters [2] 2017, Redundant transaction is

reduced. Not suitable for heterogeneous

clusters.

A. Stupar, S. Michel, and R. Schenkel Large

scale Distributed System for Information

Retrieval. Rank reduce processing K nearest

neighbour queries on top of MapReduce, [3]

201, It exploits the inherent parallelism

available in the FP-Growth algorithm. It is

suitable only for very large sets of data.

M. Jang, Y.S. Shin, and J.W. Chang IEEE

International Conference on High

Performance Computing and

Communication. A grid-based knearest

neighbor join for large scale datasets on

MapReduce [5], 2015, Performance of

processing large-scale hierarchical data in

distributed scientific applications is high.

MapReduce application’s fault tolerance

capability appears as a high overhead

construct.

Q. Chen, Y. Yao and Z. Xiao IEEE

Transaction on Parallel and Distributed

Systems. Libra: Lightweight data skew

mitigation in MapReduce [6], 2015, Real

data driven experiments validate the

efficiency and effectiveness.

3. METHODOLOGIES
KNN assumes that the data is in a feature

space. More exactly, the data points are in a

metric space.

The data can be scalars or possibly even

multidimensional vectors. Since the points

are in feature space, they have a notion

of distance – This need not necessarily

be Euclidean distance although it is one of

the commonly used methods.

The kNN uses training data as reference

to classify the new data points

collectively called testing dataset. Each of

the training data consists of a set of

vectors and class label associated with

each vector.

In the simplest case, it will be either + or –

(for positive or negative classes). But kNN,

can work equally well with arbitrary number

of classes. A single number ‘k’ is given.

This number decides how many neighbors

(where neighbors are defined based on the

distance metric) influence the classification.

This is usually an odd number if the number

of classes is 2. If k=1, then the algorithm is

simply called the nearest neighbor

algorithm.

The outcome of kNN-DP is the partitioned

Data with some skewness and load

imbalance. To reduce the load Imbalance

,the free space should be reallocated to

the remaining filled partition. Then

repartitioning Techniques is used to

repartition the data and reduce the data

skewness.

Figure 3.1 Data Partitioning Architecture

In MapReduce ,the mapper checks

for the redundant data in all the available

nodes. Once the data is mapped the job tracker

and task tracker are started and parse the whole

data and fetch the relevant data to the reduce

phase. The data is balanced in this section and

reducer iterate the output data. The output from

reducer is pushed to the different partitions and

kNN-DP is performed to reduce the data

skewness. The outcome of the kNN-DP doesn't

effectively reduce the data skewness and some

of the partitions are left empty. To utilize free

space, reallocate the partitions. Then the result

will be repartitioned using the repartitioning

technique to reduce the data skewness.

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

3.1 kNN-DP

Figure 3.2 kNN-DP Design

An all k-nearest neighbor Data Partition

(kNN-DP) is a variation of a k-nearest

neighbor query and determines the k-nearest

neighbors for each point in the given dataset

in one query process. It is a useful operation

for batch-based processing of a large

distributed point dataset. Consider, for

example, a location-based service which

recommends each user his or her nearby

users, who may the candidates of new

friends.

Given that users' locations are maintained

by the underlying database, we can

generate such recommendation lists by

issuing a kNN query (e.g., k = 5) on the

database. In a centralized database

environment, we can use the existing kNN-

DP algorithms.

Although efficient algorithms for kNN

queries are available for centralized

databases, we need to consider supporting

distributed environments where the target

data is managed in multiple servers in a

distributed way. User location information

of a location-based service in the above

example may be distributed in many servers.

In such a case, we need to consider using

cloud computing technologies for efficiently

executing queries.

Especially, MapReduce, which is a

fundamental framework for processing

large-scaled data in distributed and

parallel environments, is a promising

method for enabling scalable data

processing. In our work, we focus on

the use of Apache Hadoop since it is

quite popular software for MapReduce-

based data processing.

3.2 Reallocate Free Space Partition

Figure 3.3 Reallocate Free Space

Partition Design

In kNN-DP the partitions not fully

utilized and some of the partition are

empty. These Empty partition can be

reallocated to the existing partitions .This

can be done by calculating total free space

in each partitions per total number of

partitions and merge the sub divided

empty partition to the existing partitions.

 Therefore all the partitions will be

effectively utilized. It results in effective

utilization of space and task allocation to

each partition. Reallocate Free Space

Partition (RFSP) utilize the previous

partitions result of kNN-DP. It update the

status of the each partition whether its empty

are not.

If the partition are effectively utilized then it

will proceed with the process or else empty

partitions will be reallocated evenly to the

existing partitions in balanced manner.

Therefore all the partitions will be

effectively utilized. It results in effective

utilization of space and task allocation to

each partition.

3.3 MapReduce Using Repartitioning

Techniques in Sparks

(i) Partitioning Turning-Based Skew

Handling Approach

Based on the virtual partition in the map

phase, the repartition in the reduce phase

recombines the virtual partitions into new

partitions to ensure that the number of

reduce tasks is equal to the final number

of new partitions. Meanwhile, the size of

new data in each partition maintains a

certain balance.

(ii) Virtual Partitioning in Map Phase

After all map tasks are completed, all key-

value pairs are sorted by partition number.

Inside the partition, all key-value pairs are

sorted following the key order. When

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

dealing with large-scale datasets, the

output data generated by each map task

usually occupy a large amount of

memory, which is spilled to the local disk.

All spilled files are then me raged and

written to the disk after all map tasks are

completed. Throughout the process of

spilling and merging, the index

corresponding to each partition is

established by the map tasks.

When reading data, it can speed up the task

of obtaining subsequent d ate for the reduce

partitions. In the repartitioning process,

the partition results in the map phase are

divided and combined once again. The key-

value pairs in one partition are hence

separated and merged into another. When a

reduce task requests partita ion data

based on the results of a new partition,

the requested data is distributed in different

places in the spilled files, resulting in a

consequential and inefficient reading of

data. The key challenge in virtual

partitioning is choosing the partition number

of key-value pairs R in function hash key

%R. By default, R is the number of reduce

tasks; but, ideally, R should be determined

by the number of types of input key-

value pairs.

We think that the appropriate number of

virtual partitions is between these two

values. When the value of R is determined,

the partition number is no longer

correspondent to the reduce task number

through hash key %R. The data in each

partition in the map phase can be

processed by an uncertain reduce task; such

a partition is called a virtual partition. Each

virtual partition is an integral part of an

actual partition that has been repartitioned.

(iii) Obtaining Global Output

Information

Based on the global output metadata of map

tasks, the repartitioning process makes full

use of the communication between map

tasks and reduces tasks to divide the

original communication process into two

phases: (1) Obtaining the metadata output

of each map task and (2) Recombining the

information in the reduce tasks.

Figure 3.4 the process of acquisition of

metadata for reduce tasks.

(iv) Repartitioning

The repartitioning process divides the

collected virtual partitions into new

partitions of the same number as reduce

tasks. The data size of the biggest partition

can be minimized after repartitioning

process. It can also reduce the processing

time needed for the maximum partition,

thereby speeding up the completion of the

entire reduce phase and increasing the rate

of completed jobs as well as system

throughput.

4. EVALUATION
All experiments to measure the performance

of PTSH were performed on a 7-node

cluster with six slave nodes and onemaster

node. Each node used two 2 GHz quadcore

CPUs with 16GB of RAM and 500GB

SATA disk drives. All nodes were used as

both compute and storage nodes. The HDFS

block size was set to 64MB, and a common

gigabit Ethernet

Switchconnectedeachnode.WeevaluatePTS

Hperformance on a virtual cluster: five

virtual machines were deployed on each of

the six machines, reaching a cluster size of

30 data nodes. All virtual machines were

configured with one CPUand 1GB memory.

The baseline for our deployment was

Hadoop 1.1.2 [19], and we configured the

HDFS to maintain three replicas for each

data block in this cluster.

Measures of Data Skewness and Data

Locality. Some distributions of data, such as

the bell curve, are symmetric.

Thismeansthattherightandtheleftpartsofthedi

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

stribution are perfect mirror images of each

other. Not every distribution of data is

symmetric. We know that data skew arises

out of the physical properties of objects and

hotspots on subsets of the entire domain

(e.g., the word frequency appearing in

documents obeys a Zipfian distribution). The

measure of how asymmetric a distribution is

is called skewness and is used as a fairness

metric in the literature [20]. We use the

coefficient of variation to numerically

calculate the measure of data skewness as

follows:

Cov= stdev/ mean ×100% 3 The data

distribution is completely fair if the

coefficient of variation is zero. As Cov

increases, skewness does as well. Data

locality is important for performance

evaluation. The data locality is the sum of

the frequencies of keys in nodes, which are

partitioned to that of the frequencies of all

keys [5]:

where mini≤j≤nFKj i indicates the minimum

frequency of key ki in data node nj and

maxi≤j≤nFKj i is the maximum frequency of

key ki in data node nj.

Performance of PTSH on Applications.

First, to compare native Hadoop and PTSH,

we performed our evaluations on PUMA

[11], which represents a wide range of

MapReduce applications exhibiting

characteristics with high/low computation

and high/low shuffle volumes. Second, we

evaluated PTSH with Closer [9], LEEN [5],

and native Hadoop through the Word Count

application. The applications used in our

evaluation were as follows:

Inverted Index (II): It takes a list of

documents as inputs and generates word-to-

document indexing.Map emits <word,

docId> tuples with each word emitted once

per docId. Reduce combines all tuples on

key<word>and emits<word,

list(docId)>tuples after removing duplicates.

 Word Count (WC): This application counts

the occurrences of each word in a large

collection of documents. Map emits

<word,1> tuples. Reduce adds the counts for

a given word from all map tasks and outputs

the final count. Weused frequent item

dataset [22] for Inverted Index and

generated skewed data by RandomWriter

[23] for Word Count. In our experiments,

we used the frequency variation of the keys

and their distribution as parameters in the

motivation of the design. Since the former

clearly causes variation in the data

distribution of the inputs of the reducers, the

variation in the latter affects the amount of

data transferred during the shuffle phase [5].

We present the results of executing these

applications with varying sizes of input data,

frequency of variationofthekeys, and

averagevariationinkeydistribution. We ran

each application at least five times and used

the average performance results.

The number of virtual partitions depends on

the tuning ratio (TR) set by user, which can

be computed as follows:

In the above, V is the number of virtual

partitions and R is the number of reduce

tasks. To compare the proposed algorithm

with the native Hadoop system, we ran each

application by using the PTSH algorithm

with different partition turning parameters.

The value of TR varied from 1 to 50. When

TR=1, this meant that PTSH was not used

and reached the uniform distribution of each

key among the data nodes (key distribution

variation=0%). However, in the map phase,

the combining process affected the amount

of data to be transferred during the shuffle

phase, emphasising the amount of input data

for the reduce tasks. Therefore, the map

native combine was not a factor in our

experiments

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

Figure 4.1 Performance of II and WC

with different variations in the frequency

of keys as well as different key

distributions.

Figure 4.2Percentage of occurence of each

product

CONCLUSION
Big data is changing impact in many

ways, such as shopping, social media,

and education. One of the most promising

areas where big data can be applied for

improvements is E-commerce. The fields

of E-commerce generate large volumes

of data, for instance, electronic medical

records. Both the volume and the velocity of

data in e-commerce are truly sufficiently

high to require big data today.

Understanding these data with

methodologies using big data processing

can help analytics for financial analysis,

and fraud and waste monitoring. PTSH

algorithm proposed to balance the input

data of reduce tasks, which aims to

process data related to e-commerce.

Performance studies carried out on a

seven-node MapReduce cluster showed

that PTSH outperformed native Hadoop,

Closer, and LEEN.

Compared with one-stage partitioning

strategies, two -stage partitioning can

mitigate skew data in reduce tasks. It was

found that data skewness and workload

balance simultaneously influenced the

efficiency of MapReduce. The experimental

results showed that MapReduce is sensitive

to workload balance, although good

skewness is also important. MapReduce

was effective in the best case of high

balance and high skewness.

The combination of high balance and

moderate skewness was the second-best

case. The two-stage partitioning performed

better, and PTSH improved the efficiency of

E-commerce data. The current strategy

requires obtaining all metadata outputs by

map tasks before the reduce phase. In

processing applications of large-scale data,

overhead due to transmission between the

map phase and the reduce phase may

increase. This overhead can be reduced by

using sparks via yarn.

REFERENCES
[1] Xujun Zhao, Jifu Zhang and Xiao Qin

“kNN DP Handling Data Skewness in kNN

joins using Mapreduce” U.S. National

Science Foundation under Grant CCF–

0845257(CAREER) 2017, pp. 1–14.

[2] Y. Xun, J. Zhang, X. Qin, and X. Zhao,

“Fidoop -dp: Data partitioning in frequent

itemset mining on hadoop clusters,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 28, no. 1, pp. 101–114, 2017.

[3] A. Stupar, S. Michel, and R.

Schenkel, “Rankreduce -processing k-

nearest neighbor queries on top of

mapreduce,” in Proc. 8thWorkshop on

Large-Scale Distributed Systems for

Information Retrieval, 2010, pp. 13–18.

[4] C. Zhang, F. Li, and J. Jestes, “Efficient

parallel knn joins for large data in

mapreduce,” in Proc. ACM 15th

International Conference on Extending

Database Technology, 2012, pp. 38–49.

[5] M. Jang, Y.-S.Shin, and J.-W.

Chang, “A grid-based k-nearest neighbor

join for large scale datasets on mapreduce,”

in Proc. IEEE International Conference on

IJCSET – Volume 5 Issue 4 –APRIL 2019. ISSN: 2455-9091 Pages: 1-8

High Performance Computing and

Communications (HPCC), 2015, pp. 888–

891.

[6] Q. Chen, J. Yao, and Z. Xiao, “Libra:

Lightweight data skew mitigation in

mapreduce,” IEEE Transactions on Parallel

and Distributed Systems, vol. 26, no. 9, pp.

2520 –2533, 2015.

[7] YongChul Kwon, Bill Howe,

Magdalena Balazinska and Jerome Rolia,

“SkewTune: Mitigating Skew in

MapReduce Applications”, in Proc. of the

ACM SIGMOD International Conference

on Management Data, pp. 25-36, ACM,

2012.

[8] YongChul Kwon, Bill Howe, Magdalena

Balazinska and Jerome Rolia, “A Study of

Skew in MapReduce Applications”, in Proc.

of the Open Cirrus Summit, 2011.

[9] Benjamin Gufler, Alfons Kemper,

Angelika Reiser and Nikolaus Augsten,

“Handling Data Skew in MapReduce”,

International Conference on Cloud

Computing and Services Science,

CLOSER 2011.

[10] J. Vinutha and R. Chandramma,

“Skew Types Mitigating Techniques to

Increase the Performance of MapReduce

Applications”, International Journal of

Emerging Technology and Advanced

Engineering, ISSN 2250 – 2459 (Online),

Volume 5, Special Issue 2, May 2015.

[11] V. A. Nawale and Priya Deshpande,

“Survey on Load Balancing and Data

Skew Mitigation in MapReduce

Applications”, International Journal of

Computer Engineering & Technology,

ISSN 0976 – 6367 (Print), ISSN 0976 –

6375 (Online), pp. 32-41, Volume 6, Issue 1,

January 2015.

[12] QiChen, Jinyu Yao, and Zhen Xiao,

“LIBRA: Light Weight Data Skew

MIitigation in MapReduce”, IEEE

Transactions on Parallel and Distributed

Systems, 26(9), pp. 2520-2533, IEEE, 2015.

[13] D. S. Tamhane and S. N. Sayyad,

“Big Data Analysis Using HACE

Theorem”, International Journal of

Advanced Research in Computer Engineer

ing & Technology, ISSN 2278 – 1323,

Volume 4, Issue 1, January 2015.

[14] YongChul Kwon, Magdalena

Balazinska, Bill Howe and KaiRen,

“Managing Skew in Hadoop”, IEEE Eng.

Bull., 36(1), pp. 24-33, 2013.

[15] Qifa Ke, Vijayan Prabhakaran, Yuan

Yu, Yinglian X ie, Junfeng Yang and

Jingyue Wu, “Optimizing Data Partitioning

for Data-Parallel Computing”, in proc. of the

HotOS, pp. 13, 2013

