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ABSTRACT: The  MapReduce  programming  model  has  been  successfully  used  for  

big  data analytics.    However, data skewness invariably occurs in big data analytics and 

seriously affects efficiency.    To overcome the data skewness problem in MapReduce, in the 

past proposed a data processing algorithm called kNN-DP with reallocatedfree space partition 

technique. The  robustness  and  efficiency  of  the  algorithm  were  tested  on  a  wide  

variety  of simulated  datasets.  The  results  showed  that  kNN-DP  with  Reallocate  Free  

Space  partition technique    can prevent  data skew in MapReduce efficiently. Data skewness 

is not fully rectified.    While applying the result of the reallocated free space  (in phase-1) as 

a input to the  proposed algorithm called  repartitioning  algorithm  (PTSH-Partitioning 

Turning based  Skew  Handling),  it totally  avoid  the  causes  of the  skewness.   In  

comparison  with  the one-stage partitioning  strategy used, PTSH uses a two-stage  strategy  

and  the  partition  tuning  method  to  disperse  key-value  pairs  in  virtual partitions  and  

recombines  each  partition  in  case  of  data  skew.  PTSH  improves  the performance  of  

MapReduce  jobs  in  comparison  with  the  native  Hadoop,  Closer,  and Locality-aware  

and  Fairness-aware  Key  partitioning  (LEEN).  Even though PTSH is very effective, two-

stage partitioning strategy is overhead.  This overhead can be prevented by using spark.  The 

time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm 

using spark. 
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1. INTRODUCTION 
The  use  of  big  data  analytics  in  E-

commerce  offers  many  attractive  

opportunities  while posing  significant 

challenge. The  traditional data processing 

and analytical algorithms cannot satisfy  the  

requirements  of  big  electronic  gadgets  

data  and  cloud  computing.  Fortunately, 

advances in data management, particularly 

such parallel computational models as 

MapReduce, can be applied to process and 

analyse diverse and large-scale datasets. 

However, big data is so large and complex 

that it cannot be managed under traditional 

methods. For  example,  when  using   

 

association  rule  mining  (ARM)  on  

MapReduce,  algorithms  must extract the 

necessary information from big data in a 

timely manner. MapReduce is a powerful 

and cost-effective tool for massively parallel 

analytics.   

It can distribute data and computational 

tasks to thousands of cheap physical nodes, 

hence providing massive storage capacity 

and parallel computing capabilities.  

MapReduce is a programming model  that 

allows  the  easy  development  of  scalable  

parallel  applications  to  process  big  data  

on  large clusters of commodity machines.  
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A MapReduce job typically runs in two 

main phases: a map phase and a reduce 

phase.  In each phase, distributed tasks 

process datasets on a cluster of computers.  

When  a  map  task  is  completed,  the  

reduce  tasks  are  notified  to  pull  newly 

available  data.  This transfer process is 

referred to as a shuffle.   All  map  tasks  

must  be completed  before  the  shuffle  part  

of  the  reduce  phase  to  allow  the  latter  

to  complete.  We consider  a  case  where  

computational  load  is  unbalanced  among  

map  tasks  or  reduce tasks. We call such an 

unbalanced situation map skew or reduce 

skew, respectively. Skew can lead to longer 

job execution times and lower cluster 

throughput, thus affecting the performance 

of MapReduce.  

Kwon [3] analysed the types of skew that 

arises in a variety of MapReduce 

applications but did not provide a relevant 

solution to unbalanced partitioning in the 

reduce phase.  Ibrahim et al.  designed  the  

LEEN  algorithm[5]  to  determine  the  

corresponding partition of a map output 

based on the frequency of key-value pairs. 

When a large amount of data and keys are 

unevenly distributed, data skew may occur, 

resulting in an unbalanced input of reduce 

tasks.  Xu et al.  [6]  focused  on  resampling  

partitioning strategy  to  deal  with  

unbalanced  partitioning  in  the  reduce  

phase.  However,  when  dealing with  

massive  amounts  of  data, the  sampling  

overhead  incurred  by  this  strategy  is  

high  and affects the performance of 

MapReduce.  

Ramakrishna et al. [7] proposed  techniques 

to split each  key  with  a  large  record  size  

into  sub keys  to  allow  for  a  more  even  

distribution  of workload among reducers. 

However, it requires waiting until all map 

tasks are completed to gather partition size 

information before reduce tasks can begin. 

Considering this issue, we want to use a two 

-stage strategy to divide the map output into 

fine-grained partitions and recombine them 

based on global output information to 

disperse skewed data.  In  this  paper,  we  

propose  a  data  processing  algorithm  

called  Partition  Tuning -based Skew  

Handling  (PTSH)  to  address  the  problem.  

First, we first use a virtual partitioning 

method to divide the original partitions into 

fine-grained partitions and collect real-time 

stats regarding the data size of each 

partition. Second, the partitioning g 

information of the map task is extracted and 

the corresponding index sent to the reduce 

tasks for repartition.  

Finally, the repartitioning process divides 

the collected virtual partitions into new 

partitions of the same number as the reduce 

tasks. The main contributions of the paper 

lie on the following: 

(1) Based on a two-stage partitioning 

strategy, we propose a partition tuning 

method to divide skewed  partitions  into  

fine-grained  partitions  and  use  a  

repartition  method  to  solve  the problem of 

unbalanced data division.  As partitioning is 

an NP-hard problem, we propose a 

repartition algorithm, which can effectively 

balance skewed partitions. 

(2)  We conducted several experiments on 

simulated datasets and real datasets.  

Compared with one-stage strategies, the 

results showed that our method could 

effectively mitigate data skew in 

MapReduce jobs and improve efficiency. 

(3) A case study of ARM for real healthcare 

data was carried out on MapReduce. 

Combining an  Apriori  algorithm  and  

PTSH,  it  could  balance  the  data  

distribution  of  reduce  tasks  and improve 

the efficiency of ARM on healthcare data. 

 

2. LITERATURE REVIEW 
This section provides the previous 

techniques and frameworks.  It also provides 

the numerous methodologies.   

Xujun Zhao, Jifu Zhang and Xiao Qin IEEE 

Transaction on parallel and distributed 

system. KNN DP Handling Data Skewness 

in kNN joins using MapReduce [1] 2017,  

Static  optimization  of the  input  data  

partition can  improve  the running  time  in  

the presence  of  skew, caused  by  uneven 

processing  times.  The optimization time is 

short when compared to the actual query 

execution time.  

Y. Kwon, M. Balazinska, and J. Rolia 

International Conference on Management of 

Data. SkewTune: Mitigating Skew in 
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MapReduce Applications [7] 2012,  

Repartitions  the  load automatically  and 

detects  the  straggler node  and  tries  to 

mitigate  by  allocating the  task  to  the  idle 

node.  

Y. Xun, J. Zhang, and X. QinIEEE 

Transaction on Parallel and Distributed 

System Fidoop-DP: Data Partitioning in 

Frequent Itemset Mining on Hadoop 

Clusters [2] 2017, Redundant transaction is 

reduced. Not suitable for heterogeneous 

clusters. 

A. Stupar, S. Michel, and R. Schenkel Large 

scale Distributed System for Information 

Retrieval. Rank reduce processing K nearest 

neighbour queries on top of MapReduce, [3] 

201,  It exploits the inherent parallelism 

available in the FP-Growth algorithm. It is 

suitable only for very large sets of data. 

M. Jang, Y.S. Shin, and J.W. Chang IEEE 

International Conference on High 

Performance Computing and 

Communication. A grid-based knearest 

neighbor join for large scale datasets on 

MapReduce [5], 2015,  Performance of 

processing large-scale hierarchical data in 

distributed scientific applications is high. 

MapReduce application’s fault tolerance 

capability appears as a high overhead 

construct. 

Q. Chen, Y.  Yao and Z. Xiao IEEE 

Transaction on Parallel and Distributed 

Systems. Libra: Lightweight data skew 

mitigation in MapReduce [6], 2015,  Real 

data driven experiments validate the 

efficiency and effectiveness.  

 

3. METHODOLOGIES 
KNN assumes that the data is in a feature 

space. More exactly, the data points are in a 

metric space. 

The data can be scalars or possibly even 

multidimensional vectors.  Since  the  points  

are  in feature  space,  they  have  a  notion  

of  distance  –  This  need  not  necessarily  

be  Euclidean distance although it is one of 

the commonly used methods.  

The  kNN  uses  training  data  as reference  

to  classify  the  new  data  points  

collectively  called testing dataset. Each  of  

the  training  data  consists  of  a  set  of  

vectors  and  class  label  associated  with  

each vector.  

In the simplest case, it will be either + or – 

(for positive or negative classes). But kNN, 

can work equally well with arbitrary number 

of classes.  A single number ‘k’ is given.  

This number decides how many neighbors 

(where neighbors are defined based on the 

distance metric) influence the classification.  

This is usually an odd number if the number 

of classes is 2. If k=1, then the algorithm is 

simply called the nearest neighbor 

algorithm.   

The outcome of kNN-DP is the partitioned 

Data with some skewness and load 

imbalance.  To  reduce  the  load  Imbalance  

,the  free  space  should  be  reallocated  to  

the  remaining  filled partition. Then 

repartitioning Techniques is used to 

repartition the data and reduce the data 

skewness. 

 
Figure 3.1 Data Partitioning Architecture 

In  MapReduce  ,the  mapper  checks  

for  the  redundant  data  in  all  the  available  

nodes. Once the data is mapped the job tracker 

and task tracker are started and parse the whole 

data and fetch the relevant data to the reduce 

phase.  The data is balanced in this section and 

reducer iterate the output data. The output from 

reducer is pushed to the different partitions and 

kNN-DP is performed to reduce the data 

skewness. The outcome of the kNN-DP doesn't 

effectively reduce the data skewness and some 

of the partitions are left empty. To utilize free 

space, reallocate the partitions. Then the result 

will be repartitioned using the repartitioning 

technique to reduce the data skewness. 
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3.1 kNN-DP 

 
Figure 3.2 kNN-DP Design 

 

An  all  k-nearest  neighbor  Data  Partition  

(  kNN-DP)  is  a  variation  of  a  k-nearest 

neighbor query and determines the k-nearest 

neighbors for each point in the given dataset 

in one query process. It is a useful operation 

for batch-based processing of a large 

distributed point dataset. Consider, for 

example, a location-based service which 

recommends each user his or her nearby 

users, who may the candidates of new 

friends.  

Given that users'  locations are  maintained  

by  the  underlying  database,  we  can  

generate  such  recommendation  lists  by 

issuing a kNN query  (e.g., k = 5) on the 

database. In a centralized database 

environment, we can use the existing kNN-

DP algorithms. 

Although efficient algorithms for kNN 

queries are available for centralized 

databases, we need to consider supporting 

distributed environments where the target 

data is managed in multiple servers in a 

distributed way. User location information 

of a location-based service in the above 

example may be distributed in many servers. 

In such a case, we need to consider using 

cloud computing technologies for efficiently 

executing queries.   

Especially, MapReduce,  which  is  a  

fundamental  framework  for  processing  

large-scaled  data  in distributed  and  

parallel  environments,  is  a  promising  

method  for  enabling  scalable  data 

processing.  In  our  work,  we  focus  on  

the  use  of  Apache  Hadoop  since  it  is  

quite  popular software for MapReduce-

based data processing. 

3.2 Reallocate Free Space Partition 

 
Figure 3.3 Reallocate Free Space 

Partition Design 

 

In  kNN-DP  the  partitions  not  fully  

utilized  and  some  of  the  partition  are  

empty. These  Empty  partition  can  be  

reallocated  to  the  existing  partitions  .This  

can  be  done  by calculating total free space 

in each partitions per total number of 

partitions and merge  the sub  divided  

empty  partition  to  the  existing  partitions.  

 Therefore all the partitions will be 

effectively utilized.  It  results  in  effective  

utilization  of  space  and  task  allocation  to  

each partition. Reallocate Free Space 

Partition (RFSP) utilize the previous 

partitions result of kNN-DP. It update the 

status of the each partition whether its empty 

are not.  

If the partition are effectively utilized then it 

will proceed with the process or else empty 

partitions will be reallocated evenly to the 

existing partitions in balanced manner. 

Therefore all the partitions will be 

effectively utilized.  It results in effective 

utilization of space and task allocation to 

each partition. 

 

3.3 MapReduce Using Repartitioning 

Techniques in Sparks 

(i) Partitioning Turning-Based Skew 

Handling Approach 

Based  on  the  virtual  partition  in  the  map  

phase,  the  repartition  in  the  reduce  phase  

recombines the virtual partitions into new 

partitions to ensure that the number of 

reduce tasks is  equal   to  the  final  number  

of  new  partitions.  Meanwhile, the size of 

new data in each partition maintains a 

certain balance. 

 

(ii) Virtual Partitioning in Map Phase 

After all map tasks are completed, all key-

value pairs are sorted by partition number. 

Inside the partition, all key-value pairs are 

sorted following the key order. When 
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dealing with large-scale  datasets,  the  

output  data  generated  by  each  map  task  

usually  occupy  a  large amount of  

memory, which  is spilled to the local disk. 

All spilled files are then me raged and 

written to the disk after all map tasks are 

completed. Throughout the process of 

spilling and merging,  the  index  

corresponding  to  each  partition  is  

established  by  the  map  tasks.   

When reading data, it can speed up the task 

of obtaining subsequent d ate for the reduce 

partitions. In  the  repartitioning  process,  

the  partition  results  in  the  map  phase  are  

divided  and combined once again. The key-

value pairs in one partition are hence 

separated and merged into another.  When  a  

reduce  task  requests  partita ion  data  

based  on  the  results  of  a  new partition, 

the requested data is distributed in different 

places in the spilled files, resulting in a 

consequential and inefficient reading of 

data. The key challenge in virtual 

partitioning is choosing the partition number 

of key-value pairs R in function hash key 

%R. By default,  R  is the number of reduce 

tasks; but, ideally,  R should  be  determined  

by  the  number  of  types  of  input  key-

value  pairs.   

We think that the appropriate number of 

virtual partitions is between these two 

values. When the value of  R  is determined,  

the  partition  number  is  no  longer  

correspondent  to  the  reduce  task  number 

through  hash  key  %R. The  data  in  each  

partition  in  the  map  phase  can  be  

processed  by  an uncertain reduce task; such 

a partition is called a virtual partition. Each 

virtual partition is an integral part of an 

actual partition that has been repartitioned. 

   

(iii) Obtaining Global Output 

Information 

Based on the global output metadata of map 

tasks, the repartitioning process makes full  

use  of  the  communication  between  map  

tasks  and  reduces  tasks  to  divide  the  

original communication process into two 

phases:  (1) Obtaining the metadata output 

of each map task and  (2) Recombining the 

information in the reduce tasks. 

 
Figure 3.4 the process of acquisition of 

metadata for reduce tasks. 

 

(iv)  Repartitioning 

The repartitioning process divides the 

collected virtual partitions into new 

partitions of the same number as reduce 

tasks. The data size of the biggest partition 

can be minimized after repartitioning 

process. It can also reduce the processing 

time needed for the maximum partition, 

thereby speeding up the completion of the 

entire reduce phase and increasing the rate 

of completed jobs as well as system 

throughput. 

 

4. EVALUATION 
All experiments to measure the performance 

of PTSH were performed on a 7-node 

cluster with six slave nodes and onemaster 

node. Each node used two 2 GHz quadcore 

CPUs with 16GB of RAM and 500GB 

SATA disk drives. All nodes were used as 

both compute and storage nodes. The HDFS 

block size was set to 64MB, and a common 

gigabit Ethernet 

Switchconnectedeachnode.WeevaluatePTS

Hperformance on a virtual cluster: five 

virtual machines were deployed on each of 

the six machines, reaching a cluster size of 

30 data nodes. All virtual machines were 

configured with one CPUand 1GB memory. 

The baseline for our deployment was 

Hadoop 1.1.2 [19], and we configured the 

HDFS to maintain three replicas for each 

data block in this cluster. 

Measures of Data Skewness and Data 

Locality. Some distributions of data, such as 

the bell curve, are symmetric. 

Thismeansthattherightandtheleftpartsofthedi
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stribution are perfect mirror images of each 

other. Not every distribution of data is 

symmetric. We know that data skew arises 

out of the physical properties of objects and 

hotspots on subsets of the entire domain 

(e.g., the word frequency appearing in 

documents obeys a Zipfian distribution). The 

measure of how asymmetric a distribution is 

is called skewness and is used as a fairness 

metric in the literature [20]. We use the 

coefficient of variation to numerically 

calculate the measure of data skewness as 

follows: 

Cov= stdev/ mean ×100% 3 The data 

distribution is completely fair if the 

coefficient of variation is zero. As Cov 

increases, skewness does as well. Data 

locality is important for performance 

evaluation. The data locality is the sum of 

the frequencies of keys in nodes, which are 

partitioned to that of the frequencies of all 

keys [5]: 

 
where mini≤j≤nFKj i indicates the minimum 

frequency of key ki in data node nj and 

maxi≤j≤nFKj i is the maximum frequency of 

key ki in data node nj.  

Performance of PTSH on Applications. 

First, to compare native Hadoop and PTSH, 

we performed our evaluations on PUMA 

[11], which represents a wide range of 

MapReduce applications exhibiting 

characteristics with high/low computation 

and high/low shuffle volumes. Second, we 

evaluated PTSH with Closer [9], LEEN [5], 

and native Hadoop through the Word Count 

application. The applications used in our 

evaluation were as follows: 

Inverted Index (II): It takes a list of 

documents as inputs and generates word-to-

document indexing.Map emits <word, 

docId> tuples with each word emitted once 

per docId. Reduce combines all tuples on 

key<word>and emits<word, 

list(docId)>tuples after removing duplicates.  

 Word Count (WC): This application counts 

the occurrences of each word in a large 

collection of documents. Map emits 

<word,1> tuples. Reduce adds the counts for 

a given word from all map tasks and outputs 

the final count. Weused frequent item 

dataset [22] for Inverted Index and 

generated skewed data by RandomWriter 

[23] for Word Count. In our experiments, 

we used the frequency variation of the keys 

and their distribution as parameters in the 

motivation of the design. Since the former 

clearly causes variation in the data 

distribution of the inputs of the reducers, the 

variation in the latter affects the amount of 

data transferred during the shuffle phase [5]. 

We present the results of executing these 

applications with varying sizes of input data, 

frequency of variationofthekeys, and 

averagevariationinkeydistribution. We ran 

each application at least five times and used 

the average performance results.  

The number of virtual partitions depends on 

the tuning ratio (TR) set by user, which can 

be computed as follows:  

 
In the above, V is the number of virtual 

partitions and R is the number of reduce 

tasks. To compare the proposed algorithm 

with the native Hadoop system, we ran each 

application by using the PTSH algorithm 

with different partition turning parameters. 

The value of TR varied from 1 to 50. When 

TR=1, this meant that PTSH was not used 

and reached the uniform distribution of each 

key among the data nodes (key distribution 

variation=0%). However, in the map phase, 

the combining process affected the amount 

of data to be transferred during the shuffle 

phase, emphasising the amount of input data 

for the reduce tasks. Therefore, the map 

native combine was not a factor in our 

experiments 
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Figure 4.1 Performance of II and WC 

with different variations in the frequency 

of keys as well as different key 

distributions. 

 

 
Figure 4.2Percentage of occurence of each 

product 
 

CONCLUSION 
Big  data  is  changing  impact  in  many  

ways,  such  as  shopping,  social  media,  

and education. One of the most promising 

areas where big data can be applied for 

improvements is E-commerce.  The  fields  

of  E-commerce  generate  large  volumes  

of  data,  for  instance, electronic medical 

records. Both the volume and the velocity of 

data in e-commerce are truly sufficiently 

high to require big data today.  

Understanding  these  data  with  

methodologies using  big  data  processing  

can  help  analytics  for  financial  analysis,  

and  fraud  and  waste monitoring. PTSH  

algorithm  proposed  to  balance  the  input  

data of  reduce  tasks,  which  aims  to 

process  data  related  to  e-commerce.  

Performance  studies  carried  out  on  a  

seven-node MapReduce  cluster  showed  

that PTSH  outperformed  native  Hadoop,  

Closer,  and  LEEN.  

Compared with one-stage partitioning 

strategies, two -stage partitioning can 

mitigate skew data in reduce tasks. It was 

found that data skewness and workload 

balance simultaneously influenced the 

efficiency of MapReduce. The experimental 

results showed that MapReduce is sensitive 

to workload balance, although good 

skewness is also important.  MapReduce  

was effective  in  the  best  case  of  high  

balance  and  high  skewness.   

The combination of high balance and 

moderate skewness was the second-best 

case. The two-stage partitioning performed 

better, and PTSH improved the efficiency of 

E-commerce data.  The current strategy 

requires obtaining all metadata outputs by 

map tasks before the reduce phase.  In 

processing applications of large-scale data, 

overhead due to transmission between the 

map phase and the reduce phase may 

increase.   This overhead can be reduced by 

using sparks via yarn. 

 

REFERENCES 
[1] Xujun Zhao, Jifu Zhang and Xiao Qin 

“kNN DP Handling Data Skewness in kNN 

joins using Mapreduce” U.S. National 

Science Foundation under Grant CCF–

0845257(CAREER) 2017, pp. 1–14. 

[2] Y. Xun, J. Zhang, X. Qin, and X. Zhao, 

“Fidoop -dp: Data partitioning in frequent 

itemset mining on hadoop clusters,” IEEE  

Transactions on Parallel and Distributed 

Systems, vol. 28, no. 1, pp. 101–114, 2017. 

[3]  A.  Stupar,  S.  Michel,  and  R.  

Schenkel,  “Rankreduce -processing  k-

nearest  neighbor queries on top of 

mapreduce,” in Proc. 8thWorkshop on 

Large-Scale Distributed Systems for 

Information Retrieval, 2010, pp. 13–18. 

[4] C. Zhang, F. Li, and J. Jestes, “Efficient 

parallel knn joins for large data in 

mapreduce,” in Proc. ACM 15th 

International Conference on Extending 

Database Technology, 2012, pp. 38–49. 

[5]  M.  Jang,  Y.-S.Shin,  and  J.-W.  

Chang,  “A  grid-based  k-nearest  neighbor  

join  for  large scale datasets on mapreduce,” 

in Proc. IEEE International Conference on 



IJCSET – Volume 5 Issue 4 –APRIL 2019.                     ISSN: 2455-9091               Pages: 1-8 

High Performance Computing and 

Communications (HPCC), 2015, pp. 888–

891.  

[6] Q. Chen, J. Yao, and Z. Xiao, “Libra: 

Lightweight data skew mitigation in  

mapreduce,” IEEE Transactions on Parallel 

and Distributed Systems, vol. 26, no. 9, pp. 

2520 –2533, 2015. 

[7]  YongChul  Kwon,  Bill  Howe,  

Magdalena  Balazinska  and  Jerome  Rolia,  

“SkewTune: Mitigating Skew in 

MapReduce Applications”, in Proc. of the 

ACM SIGMOD  International Conference 

on Management Data, pp. 25-36, ACM, 

2012.  

[8] YongChul Kwon, Bill Howe, Magdalena 

Balazinska and Jerome Rolia, “A Study of 

Skew in MapReduce Applications”, in Proc. 

of the Open Cirrus Summit, 2011. 

[9]  Benjamin  Gufler,  Alfons  Kemper,  

Angelika  Reiser  and  Nikolaus  Augsten,  

“Handling Data  Skew  in  MapReduce”,  

International  Conference  on  Cloud  

Computing  and  Services Science, 

CLOSER 2011. 

[10]  J.  Vinutha  and  R.  Chandramma,  

“Skew  Types  Mitigating  Techniques  to  

Increase  the Performance  of  MapReduce  

Applications”,  International  Journal  of  

Emerging  Technology and  Advanced  

Engineering,  ISSN  2250  –  2459  (Online),  

Volume  5,  Special  Issue  2,  May 2015.  

[11]  V.  A.  Nawale  and  Priya  Deshpande,  

“Survey  on  Load  Balancing  and  Data  

Skew Mitigation  in  MapReduce  

Applications”,  International  Journal  of  

Computer  Engineering  & Technology, 

ISSN 0976  –  6367 (Print), ISSN 0976  –  

6375 (Online), pp. 32-41, Volume 6, Issue 1, 

January 2015.  

[12]  QiChen,  Jinyu  Yao,  and  Zhen  Xiao,  

“LIBRA:  Light  Weight  Data  Skew  

MIitigation  in MapReduce”, IEEE 

Transactions on Parallel and Distributed 

Systems, 26(9), pp. 2520-2533, IEEE, 2015.  

[13]  D.  S.  Tamhane  and  S.  N.  Sayyad,  

“Big  Data  Analysis  Using  HACE  

Theorem”, International Journal of 

Advanced Research in Computer Engineer 

ing & Technology, ISSN 2278 – 1323, 

Volume 4, Issue 1, January 2015. 

[14]  YongChul  Kwon,  Magdalena  

Balazinska,  Bill  Howe  and  KaiRen,  

“Managing  Skew  in Hadoop”, IEEE Eng. 

Bull., 36(1), pp. 24-33, 2013. 

[15] Qifa Ke, Vijayan Prabhakaran, Yuan 

Yu, Yinglian X ie, Junfeng Yang and 

Jingyue Wu, “Optimizing Data Partitioning 

for Data-Parallel Computing”, in proc. of the 

HotOS, pp. 13, 2013 
 


