
IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11

COMPARISON OF SPATIAL COMPLEXITY WITH

SOFTWARE ENGINEERING MODELS

1 M. SUBASH, 2 MS. D. KAVITHA
1 Research Scholar, 2 Head of the Department,

1, 2 Department of Computer Science,
1, 2 KGISL Inst. of Information MGT , TamilNadu, India.

ABSTRACT- Software Engineering is worried about designing, writing, testing,

implementing and maintaining software. It frames the premise of operational design and

development to all computer systems. In this paper presents a bunch of straightforward software

complexity metrics that has been roused by improvements inside cognitive brain research.

Complexity measures are developed by breaking down the distance between segments of a

program. The more prominent the distance between program pieces, the more noteworthy the

subsequent spatial complexity of a program. Recommendations are made with respect to how

spatial complexity measures can be custom-made to singular programmer groups. Utilizing these

metrics, the complexity of a software framework can be changed utilizing abstract measures of

programmer experience and information.

Keywords – [Spatial Complexity, Procedure-Oriented Software, Software Metrics,

Psychological Complexity, Software Comprehension, Software Engineering, waterfall model,

SDLC.]

1. INTRODUCTION
Software maintenance and for the most part

software comprehension represent the biggest

expenses in the software lifecycle. To evaluate

the expense of software comprehension,

different complexity measures have been

proposed in the literature Intelligence tests

analyze various cognitive abilities. Verbal

capacity is tried. Graphical and textual based

tests are utilized to test enlistment, and spatial

abilities are tried utilizing mental rotation

tasks. Spatial capacity has been related with

the selection of critical thinking strategy, and

has assumed a significant part in the definition

of a persuasive model of working memory. To

effectively tackle debugging, maintenance and

comprehension tasks, programmers should

have information on the programming

language, have a comprehension of the

application domain and build up an

enthusiasm for the connections that can exist

between the two. To build up a

comprehension of non-trifling software

systems, a programmer should start to know

where huge parts of the program lie and have

an enthusiasm for their significance to

different parts of a program. Spatial capacity

has been related with the selection of critical

thinking strategy, and has assumed a

significant part in the definition of a

persuasive model of working memory.

Software isn't just encoded within a solitary

source file yet can be disseminated among

quite a few different files. The possibility of

the programming plan or program schema has

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
been utilized as an explanatory device to

clarify programmer ability. Letovsky and

Soloway accepted that programming plans can

be arranged within various parts of a program,

and this can make programs hard to

comprehend.

Spatial complexity is characterized here as the

trouble to work on the structure or type of a 2-

and-higher-dimensional surface or object.

Spatial complexity ought not to be mistaken

for "space complexity", "topological

complexity", "shape complexity" or "complex

systems".

Figure 1. Spatial Complexity

Spatial complexity assumes a significant part

in developing the viable software. One of the

significant exercises of the maintenance stage

is to comprehend the source code first, and on

the off chance that any progressions are

needed in source-code, The correlation

between the orientation and area of different

substances with their taking care of ought to

be set up by the developers, which requires

spatial capacities.

Spatial Complexity Metrics

 Intelligence tests look at various

cognitive abilities. Verbal capacity is tried.

Graphical and textual based tests are utilized

to test enlistment, and spatial abilities are tried

utilizing mental rotation tasks. Spatial

capacity is a term that is utilized to allude to a

person's cognitive abilities identifying with

orientation, the location of objects in space,

and the handling of location related visual

data.

 To effectively address debugging,

maintenance and comprehension tasks,

programmers should have information on the

programming language, have a comprehension

of the application space and develop an

enthusiasm for the associations that can exist

between the two. To build up a

comprehension of non-insignificant software

systems, a programmer should start to know

where huge parts of the program lie and have

an appreciation of their significance to

different parts of a program.

Software Engineering

Software engineering is a piece of computer

science that incorporates the turn of events

and working of computer systems software

and applications software.

Planning: Planning for the quality affirmation

prerequisites and ID of the risks related with

the undertaking is likewise done in the

planning stage.

Modeling: Models are types of depiction

frequently embraced in software development.

They are reflections used to address and

convey what is significant, without

superfluous detail, and to help developers

manage the complexity of the issue being.

Construction: Software construction is a

software engineering discipline. It is the nitty

gritty formation of working significant

software through a blend of coding,

verification, unit testing, integration testing,

and debugging.

Deployment: When the product is tried and fit

to be conveyed it is delivered officially in the

proper market. At times product deployment

occurs in stages according to the business

strategy of that organization. At that point

dependent on the feedback, the product might

be delivered for what it's worth or with

recommended enhancements in the focusing

on market segment.

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
Communication: Extraordinary

communication is the main trademark for

progress as a software engineer. Our work

regularly includes working across numerous

parts of the organization speaking with

product management, account management,

support, operations, sales, customers and

obviously with our friends and managers.

Software Process Models

A Process Model describes the sequence of

stages for the whole lifetime of a product.

Consequently it is some of the time

additionally called Product Life Cycle. It

presents a description of a process from some

particular viewpoint as:

Specification: Software specification or

requirements management is the process of

understanding and defining what functional

and non-functional requirements are needed

for the system and identifying the limitations

on the system's activity and development.

Design: A design model in software

engineering is an object-based picture or

pictures that address the utilization cases for a

system.

Validation: Validation is the process to assess

the software after the fulfillment of the

development stage to determine whether

software meets the client assumptions also,

requirements.

Evolution: The evolutionary model is a mix

of the Iterative and Incremental model of the

software development life cycle. The

Evolutionary development model divides the

development cycle into more modest,

incremental waterfall models in which clients

can gain admittance to the product toward the

finish of each cycle.

Software Development Life Cycle

 There are different software

developments life cycles models characterized

and designed which are followed during the

software development process. These models

are additionally eluded as "Software

Development Process Models". A

Programming process model is a theoretical

portrayal to depict the process from a

particular perspective. There are amounts of

general models for software processes, and so

forth this exploration will see the

accompanying five models:

Figure 2.SDLC Model

Problem Statement

 The issues distinguished in this

exploration are for Spatial Complexity and

Software Engineering Process Model in

development programs reason. The

exploration issues distinguished are featured

underneath:

• With most undertakings, this cycle

rehashes basically a similar way - from the

outset there is an aggressive arrangement, at

that point something unforeseen occurs, and

afterward all decisions are tossed into the

waste.

• This doesn't look so startling with

regards to a little project. In any case, now and

again we simply need to concede, regardless

of the amount it torments us that it's ideal to

change a multi-million dollar project without

any preparation than to interminably keep in a

coma and fix the bugs that will inevitably

reoccur.

• Also called computational complexity,

algorithmic complexity implies the capacity

relies upon the size of the input data and

outputs the amount of work done by a specific

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
algorithm. The amount of work, for this

situation, is generally estimated by dynamic

ideas of existence, which are designated

"computational resources." The speed of

development diminishes as the undertaking

develops.

• How does this issue influence work?

In the first place, as we have effectively

referenced, it is difficult to accurately

anticipate the circumstance. Also, technology

is quickly evolving. Thirdly, the complexity of

development is the explanation that ventures

need an ever increasing number of

programmers, however they do less and less

work.

2. EXISTING METHODOLOGY
Conceptual Model of Software Engineering

Research approaches

Software has been a critical piece of current

culture for quite a while. Specifically, this

method is worried about various software

development process models. Software

process model is a portrayal of the sequence

of activities completed in a software

engineering project, and the relative request of

these activities. It addresses a portion of the

development models specifically, waterfall, v-

shaped, incremental, RAD, iterative spiral and

agile model.

Software engineering models from

traditional method to modern technologies

A software lifecycle is the arrangement of

recognizable stages that a software product

goes through during its lifetime. However, an

appropriately overseen project in a developed

software engineering environment can reliably

achieve this objective. This examination is

stressed over the methodologies that assess the

life cycle of software through the development

models, which are known as software

development life cycle. Thusly, we are

addressing traditional for example Spiral

models just as present day development

methodologies like Agile methodologies that

incorporates Extreme programming, Scrum,

Feature Driven Development; Component

based software development methodologies

and so forth These models have advantages

and disadvantages too.

Extreme Programming Method for

Innovative Software Based on Systems

Design

In software development, the waterfall model

is usually utilized, particularly for huge scope

software systems. For more limited size

software development, agile software

development approaches, for example,

outrageous programming or scrums are

utilized. Traditional software development

methodologies are chiefly focused toward

customer-driven development, and hence, new

software methodologies are regularly not

generally welcomed in the industry. We

propose another software development

methodology that is pointed toward

developing innovative software utilizing

computerized reasoning (AI), idea creation,

value engineering, and systems design.

Continuous Delivery of Software on IoT

Devices

Given the powerful environment and changing

conditions on the Internet of Things (IoT),

developers need to intermittently refresh

software and convey new versions on brilliant

devices and edge devices, for example,

gateways. A software update can produce

unanticipated vacations, or can likewise

modify the device asset utilization.

Subsequently, propose a methodology that

manages the requirement for

(semi)automating deployment, monitoring and

visualization of the effect of software reports

on devices activity. We use modeling to

abstract the ideas that matter in the space of

constant software delivery for IoT devices.

Model User Stories in Agile Software

Development

Agile methodologies use client stories to catch

software prerequisites. This regularly brings

about colleagues over underscoring their

comprehension of the objectives, without

legitimate joining of objectives from different

partners or Clients. Existing UML or other

objective situated displaying strategies will in

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
general be excessively unpredictable for non-

specialized partners to appropriately

communicate their objectives and impart them

to the agile group. In this paper, we propose a

light weight Goal Net based strategy to

demonstrate objective necessities in agile

software advancement interaction to address

this issue. Our starter investigation and studies

in instructive software designing settings show

that it can improve agile group's gathering

attention to project objectives and, in this way,

improve group productivity and artifact

quality. The proposed approach was assessed

in college level agile software designing

ventures.

Search-Based Software Engineering

 Highlight area is quite possibly the

most significant and normal exercises

performed by engineers during software

maintenance and evolution. Highlights should

be situated across groups of items and the

software relics that understand each

component should be recognized. In any case,

when managing industrial software ancient

rarities, the search space can be gigantic. a

technique that estimates likenesses between

literary questions. The algorithms are applied

to two contextual analyses from our industrial

partners (driving producers of home machines

and moving stock) and are analyzed as far as

exactness and review.

3. PROPOSED METHODOLOGY
 Software comprehension represents

more than 33% of the lifetime cost of a

software system and the cycle of software

comprehension is straightforwardly identified

with complexity of software. The calculation

of software complexity has been finished by

the researchers using distinctive impacting

credits like control flow paths, the volume of

operands and administrators, identifier

thickness, psychological complexity and

spatial complexity. Spatial complexity

measurements demonstrate the trouble of

understanding the rationale of the program as

far as lines of code that per user is needed to

cross to follow control or data dependencies as

they assemble a psychological model. Spatial

complexity of article oriented software is the

blend of class spatial complexity and item

spatial complexity. The article spatial

complexity depends on the meaning of objects

and utilizations of item individuals. The

classes don't straightforwardly execute

typically, yet their examples are made in type

of the objects in object-oriented software

through which the usefulness of the classes is

executed. The article spatial complexity

appraises the spatial capacities expected to

correspond different meanings of the objects

with their particular classes, and different calls

of methods to their separate definitions.

The least difficult of all software complexity

estimations is the quantity of lines of code; the

more prominent the quantity of lines, the more

sophisticated a software system will be. Better

estimation of complexity incorporates basic

checks of program proclamations and

investigation of a projects control structures.

Spatial complexity of object-oriented software

class Spatial complexity (CSC), and object

Spatial complexity (OCSC), which the class

psychological spatial complexity (CSC)

measures the Spatial complexity of the two

individuals from the classes-strategies and

qualities.

Spatial complexity metrics

 Intelligence tests examine various

cognitive abilities. Verbal ability is tested.

Graphical and textual based tests are utilized

to test induction, and spatial abilities are tested

utilizing mental pivot assignments. Processing

of location related visual data. Spatial ability

has been connected with the selection of

problem-tackling procedure and has assumed

a significant part in the formulation of a

powerful model of working memory.

Software Engineering Process Model

 Software Processes is a rational

arrangement of exercises for indicating,

planning, carrying out and testing software

systems.

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11

Figure 3.Software Process Model

A software life cycle model is either a

descriptive or prescriptive characterization of

how software is or ought to be created. A

descriptive model depicts the historical

backdrop of how a specific software

framework was created. A prescriptive model

endorses how another software framework

ought to be created. Prescriptive models are

utilized as rules or systems to put together and

structure how software development activities

ought to be performed, and in what request.

This is conceivable since most such models

are instinctive or all around contemplated.

This implies that numerous quirky subtleties

that depict how a software framework is an

implicit practice can be disregarded, summed

up, or conceded for later thought.

Spatial Complexity of Procedure-Oriented

Software

Software comprehension is perhaps the

biggest expense in the software lifecycle.

While trying to control the expense of

comprehension, different complexity metrics

have been proposed to describe the trouble of

understanding a program and along these lines

permit precise assessment of the expense of a

change. Spatial complexity metrics endeavor

to represent the trouble of perusing the source

code of a program for comprehension. The

object spatial complexity measure can be

utilized to gauge the comprehension of

handling rationale through objects and their

connection, which thusly reflects viable usage

of the objects towards definite arrangement.

Classes typically are not utilized

straightforwardly, however through objects as

it were. Lower estimation of object spatial

complexity demonstrates that the class has

been used through objects in closeness to the

class affirmation, and, henceforth,

understanding the use of that class towards

complete software working will be much more

straightforward than a class having a bigger

estimation of article spatial intricacy.

Figure 4. Spatial Complexity

The measures of cognitive complexity

proposed by different creators thought about

just these loads, which were impression of

architectural perspective just and didn't

investigate the spatial angle by any stretch of

the imagination. Then again, the significance

of spatial distance towards complexity is

grounded and revealed. In this way it is

exceptionally appropriate to consolidate the

effect of architectural just as spatial parts of

the software to register the cognitive

complexity.

The program's code helps in understanding the

handling rationale and the data factors and

constants help in perceiving the input and

output of the software. The spatial complexity

dependent on the code is reliant on the

definition and utilization of different segments

of the software. In any case, there is numerous

software, which handles loads of data and do

similarly lesser preparing.

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
Cognitive Functional Size

 The Cognitive Functional Size (CFS)

metric proposed by Wang et al. basically

measure algorithmic complexity of a program

free of the language usage. The CFS metric

can't demonstrate comprehension level of a

program totally since the cognitive exertion

needed to grasp a program likewise relies

upon the programming language wherein the

specific program has been composed as

various languages have various levels and the

language level has been accounted for to

influence cognitive endeavors of

understanding the programs. In this manner,

the cognitive measures ought to likewise

consider the usage subtleties of a program

while estimating the exertion needed for

comprehension of the program. Also, the

spatial complexity measures depend on the

spatial distance between the definition and

utilization of different program components.

As of late, object-oriented metrics has been a

region of expanding interest, not just from the

agreement that data and procedure are united

thus require the arrangement of new metrics,

yet additionally from a practical perspective.

Object-oriented dialects are getting

progressively well known as a vehicle for the

development of huge software frameworks.

Class Spatial Complexity

 Measures of spatial complexity of

object oriented programming are

masterminded as class spatial complexity and

object spatial complexity. These metrics are

not simply the expansion of the spatial

complexity metrics of procedure oriented

software, yet these measures do deal with

striking highlights of object oriented software.

The understandability of the object oriented

software begins with appreciating the idea of

classes as an encapsulation of data and

methods.

a. Class Attribute Spatial Complexity

 The CASC of an attribute can be

characterized as the normal of distances of

different utilization of that attribute from its

definition/past use.

𝐂𝐀𝐒𝐂 = ∑ 𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞 (𝐈)/ 𝐏𝐏
𝐈=𝟏 ----- (1)

Where P addresses the check of utilization of

that attribute and Distance (I) is equivalent to

the outright contrast in number of lines of the

current utilization of the attribute from its

simply past use inside a similar method.

Distance = (distance of first use of the

attribute from the top of the current file) +

(distance of Definition of the attribute from

the top of the file containing definition)-- (2)

Total class attribute spatial complexity of a

class (TCASC) is characterized as normal of

CASC, all things considered (factors just as

constants) of that class.

𝐓𝐂𝐀𝐒𝐂 = ∑ 𝐂𝐀𝐒𝐂(𝐈)/ 𝐪
𝐪
𝐈=𝟏 ------------- (3)

Where ‘q’ is the count of attributes in the

class.

b. Class Method Spatial Complexity

The Class Method Spatial Complexity

(CMSC) of a method is characterized as

distance (in LOC) between the affirmation and

the meaning of the method.

Distance = (distance of definition from the

top of file containing definition) + (distance

of declaration of the method from the top of

the file containing declaration) ------- (4)

Total class method spatial complexity

(TCMSC) of a class is characterized as normal

of class method spatial complexity of all

methods of the class.

𝐓𝐂𝐌𝐒𝐂 = ∑ 𝐂𝐌𝐒𝐂(𝐈)/ 𝐦𝐦
𝐈=𝟏 -------- (5)

Where' m' is the check of the methods of the

class The class is an encapsulation of

attributes and methods, the class spatial

complexity is a joining of the two sorts of

spatial intricacies, and thus the class spatial

complexity (CS C) of a class is proposed as,

𝐂𝐒𝐂 = 𝐓𝐂𝐀𝐒𝐂 + 𝐓𝐂𝐌𝐒𝐂-------------- (6)

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
Object-Oriented Spatial Complexity

Metrics

The spatial complexity measures can be

effectively altered to survey the complexity of

object-oriented code, similarly as it tends to be

adjusted to other literary programming

dialects with no extraordinary level of trouble.

There are two fundamental types of

inheritance relations that are utilized inside

object-oriented dialects, inheritance through

class reuse and inheritance through the

development of compound objects. A fourth

measure, a composite measure, is additionally

given.

Object definition spatial complexity

The object definition cognitive-spatial

complexity (ODCSC) of an object is the result

of the cognitive load of the BCS, wherein the

object is being characterized and the total

distinction (in LOC) of the definition of the

object from its class revelation. Hence, Object

Definition Cognitive-Spatial Complexity

(ODCSC) of an object I at line number k is

characterized as:

𝐎𝐃𝐂𝐒(𝐢) = 𝐰𝐤
∗𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞 (𝐢, 𝐤)-------- (7)

 Where Wk is the cognitive weight of the

BCS, wherein the object, I has been

characterized at line number k and Distance (I,

k) is the outright contrast (in LOC) of the

definition of the object from the comparing

class assertion. In the event of numerous

records, the distance is characterized as:

Distance = (distance of object definition

from top of current file) + (distance of

declaration of the corresponding class from

the top of the file containing class) --- (8)

b. Object-Member Usage Spatial

Complexity

 A part through a specific object is

characterized as the normal of distances (in

LOC) between meanings of the part in the

relating class and calls of that part through the

object. Object Member Usage Cognitive-

Spatial Complexity of an object part I at line

number k is characterized as: -

𝐎𝐌𝐔𝐂𝐒𝐂(𝐢, 𝐤) = 𝐖𝐤
∗𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞(𝐢, 𝐤)- ---- (9)

Where Wk is the cognitive load of the BCS,

wherein the object-part, I has been utilized at

line number k and Distance (I, k) is the total

distinction (in LOC) of the current utilization

of the object-part from its definition in the

relating class.

Distance = (distance of call from the top of the

file containing call) + (distance of definition

of the member from the top of the file

containing definition)

Accordingly, Object Member Usage

Cognitive-Spatial Complexity of an object-

member I is characterized as the normal of

cognitive spatial intricacies of all uses of the

object-member i.e.

𝐎𝐌𝐔𝐂𝐒𝐂𝐢 =
∑ 𝐎𝐌𝐔𝐂𝐒𝐂(𝐢,𝐤)𝐦

𝐤=𝟏

𝐦
---- (10)

Input: A set of programs

Output: Calculated complexity of

programs

For each input character

IF (input stream==for) THEN

Call class for ()

Complexity for-check ()

Index return index

IF (input stream==if) THEN

Call class IF ()

IF (input stream==SEQUENCE) THEN

Complexity SEQUENCE complexity

END FOR

PRINT complexity

Experiment Result

Compare the proposed measures with

cognitive complexity measure (CFS) and

spatial complexity measures (CSC and OSC)

for programs showed Table 1.
 OO Cognitive

Spatial

Complexity

Measures

Cognitive

Complexity

Measures

OO Spatial

Complexity

Measures

CCSC OCSC CFS CSC OSC

Java

Program

12.49 114.62 12 6.57 62.48

C++

Program

12.78 120.41 12 6.58 64.57

Table 1.Computation Results for the

Measures

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11

Program IBVCM HSU Proposed CF-

OOSCM

Java 11.21 12.62 15.27

C++ 12.43 15.41 16.57

Table 2.Comparison table of OO Cognitive

Spatial Complexity Measures in CCSC

The table 2 shows the comparison table of OO

Cognitive Spatial Complexity Measures in

CCSC ratios demonstrates the existing

algorithms IBVCM, HSU and proposed CF-

OOSCM algorithm. The proposed algorithm is

superior to the existing algorithm. The

existing algorithms (IBVCM, HSU) values

start from 11.21 to 12.43, 12.63 to 15.41 and,

proposed Algorithm CF-OOSCM starts from

15.41 to 16.57provide the great results.

Figure 4.Comparison chart of OO

Cognitive Spatial Complexity Measures in

CCSC

The figure 4. shows the comparison chart of

OO Cognitive Spatial Complexity Measures in

CCSC ratios demonstrates the existing

algorithms IBVCM, HSU and proposed CF-

OOSCM algorithm. The proposed algorithm is

superior to the existing algorithm. The

existing algorithms (IBVCM, HSUvalues start

from 11.21 to 12.43, 12.63 to 15.41 and,

proposed Algorithm CF-OOSCM starts from

15.41 to 16.57provide the great results.

Program IBVCM HSU Proposed

CF-OOSCM

Java 12 14 16

C++ 15 21 24

Table 3.Comparison table of Cognitive

Complexity Measures in CFS

The table 3 shows the comparison table of OO

Cognitive Spatial Complexity Measures in

CFS ratios demonstrates the existing

algorithms IBVCM, HSU and proposed CF-

OOSCM algorithm. The proposed algorithm is

superior to the existing algorithm. The

existing algorithms (IBVCM, HSU) values

start from 12 to 15, 14 to 21 and, proposed

Algorithm CF-OOSCM starts from 16 to 24

provide the great results.

Figure 5.Comparison chart of OO

Cognitive Complexity Measures in CFS

The figure 5 shows the comparison chart of

OO Cognitive Complexity Measures in CFS

ratios demonstrates the existing algorithms

IBVCM, HSU and proposed CF-OOSCM

algorithm. The proposed algorithm is superior

to the existing algorithm. The existing

algorithms (IBVCM, HSU) values start from

values start from 12 to 15, 14 to 21 and,

proposed Algorithm CF-OOSCM starts from

16 to 24 provide the great results.

CONCLUSION
Spatial capacity is a term that is utilized to

allude to a person's cognitive abilities

identifying with orientation, the location of

objects in space, and the handling of location

related visual data. To effectively address

debugging, maintenance and comprehension

tasks, programmers should have information

on the programming language, have a

comprehension of the application domain and

build up an appreciation of the connections

that can exist between the two. Program

comprehension and software maintenance are

considered to considerably utilize

programmers spatial abilities.

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
In this paper, creator has proposed new

cognitive-spatial complexity measures for

object-oriented software. The proposed

measures accept spatial just as architectural

complexity of the software into represent the

assessment of the cognitive exertion needed

for software comprehension measure. This

relative investigation has shown that the

proposed measures are better pointers of the

cognitive exertion needed for program

comprehension than the comparing existing

cognitive and spatial complexity measures.

In future focusing on behavioral between

moms housed in one or the other fundamental

or enhanced cages, we identified just an

impact of cage type in feeding and drinking

conduct. We utilized a thorough and set up

echogram covering every key conduct

(maternal and non-maternal), accordingly, it is

improbable we missed any practices for which

females in the two cage types may vary.

Additionally looking at traditional enrichment

effects and upgraded spatial complexity as

executing in two layer confining frameworks

examination of effects on task performance as

traditional enrichment.

REFERENCE
[1]. A. Furfaro, T. Gallo, A. Garro, D. Saccà

and A. Tundis, "ResDevOps: A Software

Engineering Framework for Achieving Long-

Lasting Complex Systems," 2016 IEEE 24th

International Requirements Engineering

Conference (RE), Beijing, 2016, pp. 246-255,

doi: 10.1109/RE.2016.15,IEEE.

[2]. Chengying Mao, Changfu Xu, “Entropy

Based Dynamic Complexity Metrics for

Service Oriented Systems”, 24th Asia-Pacific

Software Engineering Conference Workshops,

IEEE, 2017.

[3]. Dr. Rakesh Kumar, Gurvinder Kaur,

“Comparing Complexity in Accordance with

Object Oriented Metrics”, International

Journal of Computer Applications, Volume

15, Issue 8, February 2011, PP42-45.

[4]. G. Kumar and P. K. Bhatia, "Comparative

Analysis of Software Engineering Models

from Traditional to Modern

Methodologies," 2014 Fourth International

Conference on Advanced Computing &

Communication Technologies, Rohtak, 2014,

pp. 189-196, doi:

10.1109/ACCT.2014.73.IEEE

[5]. Gayatri Vijiyan 2014 “Current Trends in

Software Engineering Research”DOI:

10.18488/journal.76/2015.2.3/76.3.65.70.IEE

E.

[6]. IqbalH.Sarker Md., Faisal Faruque 2015

“A Conceptual Model of Software

Engineering Research approaches”, pp. 229-

236, Doi: 10.1109/ASWEC.2009.42. IEEE.

[7]. J. K. Chhabra, K. K. Aggarwal, and Y.

Singh, “A unified measure of complexity of

object-oriented software”, Journal of the

Computer Society of India, vol. 34(3), 2004,

pp. 2-13.

[8]. J. Lin, H. Yu, Z. Shen and C. Miao,

"Using goal net to model user stories in agile

software development," 15th IEEE/ACIS

International Conference on Software

Engineering, Artificial Intelligence,

Networking and Parallel/Distributed

Computing (SNPD), Las Vegas, NV, 2014,

pp. 1-6, doi:

10.1109/SNPD.2014.6888731,IEEE.

[9]. M. H. Sadi and E. Yu, "Analyzing the

evolution of software development: From

creative chaos to software ecosystems," 2014

IEEE Eighth International Conference on

Research Challenges in Information Science

(RCIS), Marrakech, 2014, pp. 1-11, doi:

10.1109/RCIS.2014.6861055,IEEE.

[10]. M. Kassab, J. DeFranco and V. Graciano

Neto, "An Empirical Investigation on the

Satisfaction Levels with the Requirements

Engineering Practices: Agile vs. Waterfall,"

2018 IEEE International Professional

Communication Conference (ProComm),

Toronto, ON, 2018, pp. 118-124, doi:

10.1109/ProComm.2018.00033,IEEE.

[11]. P. Singh, H. Singh, “Class-level

Dynamic Coupling Metrics for Static and

Dynamic Analysis of Object-oriented

Systems”, International Journal of Information

and Telecommunication Technology, 1(1): 16-

28, 2010.

[12]. S. Misra and A. K. Misra, “Evaluation

and comparison of cognitive complexity

measure”, ACM SIGSOFT Software

Engineering Notes, vol. 32(2), 2007, pp. 1-5.

IJCSET – Volume 7, Issue 1 JANUARY 2021. ISSN: 2455-9091 Pages: 1-11
[13]. Shweta Sharma, Dr. S. Srinivasan, “A

review of Coupling and Cohesion metrics in

Object Oriented Environment”, International

Journal of Computer Science & Engineering

Technology (IJCSET), ISSN: 2229-3345, Vol.

4 No. 08, Aug 2013.

[14]. T. Klemola and J. Rilling, “A Cognitive

Complexity Metric Based on Category

Learning”, Proc.Second Int’l Conf. Cognitive

Informatics, pp. 106-112, 2003.

[15]. Y. Chen, "Modeling Information

Security Threats for Smart Grid Applications

by Using Software Engineering and Risk

Management," 2018 IEEE International

Conference on Smart Energy Grid

Engineering (SEGE), Oshawa, ON, 2018, pp.

128-132, doi:

10.1109/SEGE.2018.8499431,IEEE.

