
ISSN 2455 – 9091
IJCSET JANUARY Volume 1 Issue 1

1

International Journal of Computer Science Engineering and

Technology (IJCSET)

ENERGY-EFFICIENT TASK-PULL SCHEDULING FOR

DISTRIBUTED COMPUTING USING EQUAL-LENGTH CELLULAR

AUTOMATA (ELCA)

Shamsudeen E,

Assistant Professor,

Department of computer applications,

EMEA College of Arts and Science Kondotty.

Abstract : - This paper presents an energy-efficient task-pull

scheduling methodology for distributed computing using

Equal-Length Cellular Automata (ELCA). The approach

leverages a CA-based design to map tasks to processors,

ensuring load balancing and efficient task distribution for

both sequential and parallel execution. The methodology

includes algorithms for CA size computation, task-pull

generation, and scheduling, while also introducing a path-

based heuristic task scheduling (PHTS) algorithm to optimize

task execution across heterogeneous processors. The energy

consumption model considers active and idle processor

states, minimizing energy usage. Experimental results

demonstrate the effectiveness of the proposed approach in

achieving load-balanced scheduling with reduced energy

consumption in distributed environments.

Keywords: [Energy-efficient scheduling, task-pull,

distributed computing, Equal-Length Cellular Automata

(ELCA), load balancing.]

1. Introduction

 Distributed computing refers to a system where

computational tasks are distributed across multiple

interconnected nodes or machines to achieve higher

performance, scalability, and fault tolerance. It is evolving

alongside advancements in networking, parallel processing,

and system architecture. By dividing workloads across

multiple systems, distributed computing ensures efficient

utilization of resources, enabling organizations to process

large datasets and execute complex computations seamlessly.

1.1 The Need for Load Balancing in Distributed Systems

 Load balancing is a critical aspect of distributed

computing, addressing the challenge of uneven workload

distribution across nodes in a network. Without proper load

balancing, certain nodes may become overloaded while

others remain underutilized, leading to inefficiencies,

degraded performance, and potential system failures. Load

balancing mechanisms aim to distribute tasks evenly,

maximizing resource utilization and minimizing response

times, which are particularly vital for applications like e-

commerce, cloud computing, and high-performance scientific

computations.

1.2 Load Balancing Mechanisms

 Load balancing techniques in distributed computing

predominantly focused on the following areas:

1.2.1 Static Load Balancing:

 Static load balancing methods allocate tasks to nodes based

on predefined rules or prior knowledge of the system’s

capabilities. These methods, including Round-Robin and

Least Connections, rely on simplistic algorithms to distribute

tasks evenly. While effective for predictable workloads, static

methods struggle to adapt to dynamic changes in system load

or resource availability.

1.2.2 Dynamic Load Balancing:

 Dynamic load balancing techniques emerged to

address the limitations of static methods. These techniques

monitor system performance and workload in real time,

redistributing tasks dynamically as conditions change.

Algorithms like Weighted Round-Robin, Randomized

Allocation, and Threshold-Based Methods gained popularity

for their ability to adapt to varying demands.

1.2.3 Agent-Based Load Balancing:

 Agent-based systems introduced autonomy and

intelligence to load balancing. Each node is equipped with an

agent that monitors its status and communicates with other

agents to negotiate workload distribution. Early examples

include Ant Colony Optimization (ACO) and Genetic

Algorithms (GA), which mimic natural processes to achieve

efficient load distribution.

1.3 Technological Advances Driving Load Balancing

 Several technological advancements significantly

impacted load balancing strategies:

https://ijrset.in/index.php/ijrset/issue/view/92

ISSN 2455 – 9091
IJCSET JANUARY Volume 1 Issue 1

2

1.3.1 Cluster and Grid Computing:

 These technologies allowed distributed systems to

scale horizontally by adding nodes, necessitating advanced

load balancing mechanisms to manage resource allocation

effectively.

1.3.2 Cloud Computing:

 The rise of cloud platforms like Amazon Web

Services (AWS) and Microsoft Azure introduced elasticity,

where resources could be scaled dynamically. Load

balancing became essential for maintaining performance

during peak demand periods.

1.3.3 Virtualization:

 Virtual machines (VMs) and containerization

technologies like Docker enabled resource isolation and

flexibility. Load balancers began incorporating virtualization-

aware strategies to manage distributed workloads.

1.3.4 Middleware Solutions:

 Middleware frameworks, such as Apache

ZooKeeper and Hadoop’s YARN, provided built-in load

balancing capabilities, simplifying resource management in

large-scale distributed environments.

1.4 Challenges in Load Balancing

 Despite advancements, early load balancing systems

faced challenges, including:

1.4.1 Scalability Issues:

 Many algorithms struggled to scale efficiently as the

number of nodes and tasks increased.

1.4.2 Latency and Overhead:

 Monitoring and redistributing workloads in real-

time introduced communication delays and processing

overheads.

1.4.3 Heterogeneous Environments:

 Distributed systems often comprised diverse

hardware and software, complicating the development of

uniform load balancing strategies.

 The evolution of distributed computing and load

balancing laid the groundwork for modern innovations in

distributed systems. While traditional methods provided

essential solutions for balancing workloads, they revealed

limitations that spurred research into more adaptive,

intelligent, and scalable approaches. As distributed systems

continued to grow in complexity, load balancing became a

cornerstone of achieving high-performance and reliable

computing environments.

2. Literature Survey

1. R. Lu, L. Liu and Y. Chen (2011) et.al proposed A

Distributed Artificial Immune Network for Optimizing

Tracer Kinetic Models with MATLAB Distributed

Computing Engine. Artificial immune networks (AIN), a

novel intelligent soft computing method, have been

extensively applied across various domains due to their

strong global optimization capabilities, particularly in

pharmacokinetic parameter optimization. AIN leverages

clone selection and immune network principles but is

computationally intensive compared to gradient-based

methods. To enhance efficiency, a distributed AIN with a

distributed clone selection evolutionary strategy was

implemented using MATLAB Distributed Computing Engine

(MDCE). Experiments demonstrated the algorithm's

effectiveness in optimizing [18F] FDG tracer kinetic model

parameters efficiently.

2. M. Hasan (2015) et.al proposed A framework for priority

based task execution in the distributed computing

environment. Distributed computing environments have

gained significant attention over the past decade and a half,

with geographically distributed resources allocated based on

user task requirements. Key considerations for resource

provisioning include task performance, fault tolerance,

reliability, and timeliness. Various techniques have been

proposed to enhance these parameters, particularly in

ensuring reliable and timely task execution. The Cooperative

Computing System (CCS) framework, originally used in grid

computing for high-priority task reliability, is adaptable to

other distributed environments. This paper explores

extending CCS to support priority-based task execution.

3. J. Cao (2012) et.al proposed Enabling Distributed

Computing Systems with ElopTM. In the Internet era, the

goal is seamless access to computing applications and

services anytime, anywhere. To address this, elop™

computing is proposed, integrating various computing

elements as services using advanced technologies like

virtualization and SaaS. It provides higher-level services such

as metadata management, resource management, scheduling,

security, and authorization, enabling scalable distributed

computing systems. This paper details the architecture of

elop™ computing and its middleware implementation,

demonstrating its potential to support distributed computing

systems in real-world scenarios.

4. F. Z. Benchara (2016) et.al proposed A new efficient

distributed computing middleware based on cloud micro-

services for HPC. This paper introduces a new distributed

computing middleware designed for High Performance

Computing (HPC) based on cloud micro-services. The key

challenge addressed is maintaining scalability and efficiency

in massively parallel systems as big data processing demands

grow. The middleware features a cooperative micro-service

team model, where Microservice Virtual Processing Units

(MsVPUs) are integrated with load balancing and an AMQP

communication protocol to support HPC. The paper also

presents the proposed computational scheme and

middleware, along with experimental results.

5. A. Mitra (2014) et.al proposed Energy Efficient Task-Pull

Scheduling Using Equal Length Cellular Automata in

Distributed Computing. This research presents an energy-

efficient task-pull scheduling algorithm based on Cellular

Automata (CA), specifically using Equal Length Cellular

https://ijrset.in/index.php/ijrset/issue/view/92

ISSN 2455 – 9091
IJCSET JANUARY Volume 1 Issue 1

3

Automata (ELCA). The proposed method ensures equal task-

pull distribution, maximizes CPU utilization, and reduces

energy consumption. Experimental results validate the

approach's effectiveness in achieving balanced load

distribution and minimizing energy use.

3. Proposed Methodology

 The provided description outlines a detailed

approach for energy-efficient task-pull scheduling in

distributed computing environments using an n-cell cellular

automata (CA)-based Equal-Length Cellular Automata

(ELCA) design. This design facilitates load-balanced

scheduling, offering a solution that can accommodate both

sequential and parallel task execution. Here's a breakdown of

the key points:

Overview of ELCA-based Task Scheduling

1. Task and Processor Mapping:

 The system involves mapping `P` independent task

modules to `Q` processors using `M` equal-length cycles of

size `N`, generated by ELCA.

 The number of cycles and the task distribution are

designed to ensure load balancing across processors.

2. Mathematical Representation:

 The methodology uses equations to represent the

number of tasks, processors, and the length of the cycles for

task distribution (e.g., Equation 4 and Equation 5 for task and

processor counts).

 ELCA decomposition yields `M` cycles of length

`N`, where `M = 2^m` and `N = 2^(n-m)` for an `n`-cell CA.

3. Task-Pull Scheduling:

 Task modules are grouped into "task-pulls" based on

the ELCA design and randomly assigned to processors. This

ensures an equal distribution of tasks, resulting in load-

balanced scheduling.

 Task-pull mapping is performed by matching cycles

with processors according to certain rules (described in

Equations 7 and 8).

Example of Task Scheduling

Scenario 1 (Two Processors, 16 Tasks):

 Tasks are grouped into two task-pulls of length 8

each, which are then allocated to two processing units.

Scenario 2 (Eight Processors, 16 Tasks):

 Tasks are evenly distributed across eight processors,

ensuring parallel task execution.

Energy Consumption Model

Energy Consumption:

 The energy consumption model considers

processors in active (`Eactv`) or idle (`Eidle`) states.

 The total energy consumption is calculated using the

number of active and idle processors, with each task

consuming energy during execution.

The energy equation is as follows:

 𝐸𝑡𝑜𝑡𝑎𝑙 = (𝑀 × 𝑁 × 𝐸𝑎𝑐𝑡𝑣) + ((𝑄 − 𝑀) × 𝐸𝑖𝑑𝑙𝑒)
 In an ideal scenario, where all processors are in use,

the energy consumption simplifies to:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑀 × 𝑁 × 𝐸𝑎𝑐𝑡𝑣

Algorithms for Task Scheduling

1. CA Size Computation (Algorithm 1):

 This algorithm computes the size of the cellular

automaton (CA) based on the number of tasks `P` and

processors `Q`. It identifies the appropriate values of `m` and

`n` for the CA.

2. Task-Pull Generation using ELCA (Algorithm 2):

 Generates task-pulls by decomposing the CA into

equal-length cycles and schedules them based on a balanced

rule.

3. Task-Pull Scheduling (Algorithm 3):

 Tasks are allocated to processors, either sequentially

or in parallel, based on available resources.

Path-based Heuristic Task Scheduling (PHTS)

This is an additional scheduling algorithm aimed at

optimizing task execution across heterogeneous processors:

Path Prioritizing Phase: Computes the rank of each path in

the task dependency graph (DAG) by considering

computation and communication costs.

Task Selection Phase: Selects unscheduled tasks from

prioritized paths.

Processor Selection Phase: Tasks are assigned to processors

based on minimizing their finish execution time (EFT) using

an insertion-based scheduling policy.

 This approach efficiently allocates tasks to

processors using ELCA-based scheduling, ensuring load

balancing and energy efficiency. The scheduling

methodology can be applied in distributed computing

environments for both sequential and parallel processing,

optimizing energy consumption and task distribution.

4. Experiment Results

4.1 Packet delivery Ratio

Number Of

Nodes

DAIN-

PO

PCCS Proposed ELC

Aalgorithm

100 0.32 0.25 0.47

150 0.35 0.41 0.58

200 0.45 0.36 0.72

250 0.67 0.48 0.79

300 0.71 0.65 0.92

Table 1.Comparison table for Packet Delivery Ratio

 The Comparison table 1 of Packet Delivery Ratio

Values explains the different values of existing DAIN-PO,

PCCS and proposed ELCA algorithm. While comparing the

Existing algorithm and proposed ELCA algorithm, provides

the better results. The existing algorithm values start from

https://ijrset.in/index.php/ijrset/issue/view/92

ISSN 2455 – 9091
IJCSET JANUARY Volume 1 Issue 1

4

0.32 to 0.71, 0.25 to 0.65 and proposed ELCA algorithm

values starts from 0.45 to 0.92. The proposed method

provides the great results.

Figure 1.Comparison Chart for Packet Delivery Ratio

 The Figure 1 Shows the comparison chart of Packet

Delivery Ratio demonstrates the existing DAIN-PO, PCCS

and proposed ELCA algorithm. X axis denote the Number of

Nodes and y axis denotes the Packet Delivery ratio. The

proposed ELCA algorithm values are better than the existing

algorithm. The existing algorithm values start from 0.32 to

0.71, 0.25 to 0.65 and proposed ELCA algorithm values

starts from 0.45 to 0.92. The proposed method provides the

great results.

4.2 Ends-To-End Delay

Number Of

Nodes

DAIN-

PO

PCCS Proposed ELCA

algorithm

100 0.5 0.4 0.2

150 0.7 0.5 0.3

200 0.9 0.8 0.4

250 1.2 0.9 0.6

300 1.5 1.4 0.5

Table 2.Comparison table for End-To-End Delay

The Comparison table 2 of End-To-End Delay Values

explains the different values of existing DAIN-PO, PCCS

and proposed ELCA algorithm. While comparing the

Existing algorithm and proposed ELCA algorithm, provides

the better results. The existing algorithm values start from 0.5

to 1.5, 0.4 to 1.4 and proposed ELCA algorithm values starts

from 0.2 to 0.6. The proposed method provides the great

results.

Figure 2.Comparison Chart for End-To-End Delay

 The Figure 2 Shows the comparison chart of End-

To-End Delay demonstrates the existing DAIN-PO, PCCS

and proposed ELCA algorithm. X axis denote the Number of

Nodes and y axis denotes the End-To-End Delay. The

proposed ELCA algorithm values are better than the existing

algorithm. The existing algorithm values start from 0.5 to 1.5,

0.4 to 1.4 and proposed ELCA algorithm values starts from

0.2 to 0.6. The proposed method provides the great results.

4.3 Energy Consumption

Number Of

Nodes

DAIN-

PO

PCCS Proposed

ELCA

algorithm

100 900 800 600

150 1200 1500 700

200 1700 1900 900

250 2100 2300 1100

300 2500 2700 1200

Table 3.Comparison table for Energy Consumption

The Comparison table 3 of Energy Consumption Values

explains the different values of existing DAIN-PO, PCCS

and proposed ELCA algorithm. While comparing the

Existing algorithm and proposed ELCA algorithm, provides

the better results. The existing algorithm values start from

900 to 2500, 800 to 2700 and proposed ELCA algorithm

values starts from 600 to 1200. The proposed method

provides the great results.

Figure 3.Comparison Chart for Energy Consumption

 The Figure 3 Shows the comparison chart of Energy

Consumption demonstrates the existing DAIN-PO, PCCS

and proposed ELCA algorithm. X axis denote the Number of

Nodes and y axis denotes the Energy Consumption. The

proposed ELCA algorithm values are better than the existing

algorithm. The existing algorithm values start from 900 to

2500, 800 to 2700 and proposed ELCA algorithm values

starts from 600 to 1200. The proposed method provides the

great results.

CONCLUSION

 In conclusion, the proposed ELCA-based task-pull

scheduling methodology provides an effective solution for

energy-efficient task allocation in distributed computing

environments. By utilizing equal-length cycles and a

https://ijrset.in/index.php/ijrset/issue/view/92

ISSN 2455 – 9091
IJCSET JANUARY Volume 1 Issue 1

5

cooperative approach to task distribution, the system ensures

balanced load across processors, supporting both sequential

and parallel task execution. The energy consumption model

further enhances efficiency, minimizing energy usage by

optimizing active and idle processor states. Additionally, the

Path-based Heuristic Task Scheduling (PHTS) algorithm

improves task execution in heterogeneous systems. Overall,

the approach offers a scalable, efficient, and energy-

conscious scheduling solution suitable for large-scale

distributed computing tasks.

REFERENCES

[1]. R. Lu, L. Liu and Y. Chen, "A Distributed Artificial

Immune Network for Optimizing Tracer Kinetic Models with

MATLAB Distributed Computing Engine," 10th

International Symposium on Distributed Computing and

Applications to Business, Engineering and Science, Wuxi,

China, pp. 41-45, doi: 10.1109/DCABES.2.

[2]. M. Hasan and M. S. Goraya, "A framework for priority

based task execution in the distributed computing

environment," International Conference on Signal

Processing, Computing and Control (ISPCC), Waknaghat,

India, , pp. 155-158, doi: 10.1109/ISPCC.7375016.

[3]. J. Cao, S. Chen, Y. Wan and W. Chen, "Enabling

Distributed Computing Systems with ElopTM," Third

International Conference on Networking and Distributed

Computing, Hangzhou, China, pp. 49-53, doi:

10.1109/ICNDC.20.

[4]. F. Z. Benchara, M. Youssfi, O. Bouattane and H. Ouajji,

"A new efficient distributed computing middleware based on

cloud micro-services for HPC," 5th International Conference

on Multimedia Computing and Systems (ICMCS),

Marrakech, Morocco, pp. 354-359, doi:

10.1109/ICMCS.7905644.

[5]. A. Mitra, A. Kundu and M. Chattopadhyay, "Energy

Efficient Task-Pull Scheduling Using Equal Length Cellular

Automata in Distributed Computing," Fourth International

Conference of Emerging Applications of Information

Technology, Kolkata, India, pp. 40-45, doi:

10.1109/EAIT.20.

[6]. A. Sinha, T. Saini and S. V. Srikanth, "Distributed

computing approach to optimize road traffic simulation,"

International Conference on Parallel, Distributed and Grid

Computing, Solan, India, pp. 360-364, doi:

10.1109/PDGC.7030771.

[7]. Z. Yang, C. Zhang, M. Hu and F. Lin, "OPC: A

Distributed Computing and Memory Computing-Based

Effective Solution of Big Data," IEEE International

Conference on Smart City/SocialCom/SustainCom

(SmartCity), Chengdu, China, pp. 50-53, doi:

10.1109/SmartCity.46.

[8]. O. H. Ibarra, "Advances in parallel and distributed

computing models - APDCM," IEEE International

Symposium on Parallel & Distributed Processing, Workshops

and Phd Forum (IPDPSW), Atlanta, GA, USA, pp. 1-1, doi:

10.1109/IPDPSW.5470826.

[9]. P. D. Kaur and I. Chana, "Unfolding the Distributed

Computing Paradigms," International Conference on

Advances in Computer Engineering, Bangalore, India, pp.

339-342, doi: 10.1109/ACE.80.

[10]. Zhidong Shen and Xiaoping Wu, "The protection for

private keys in distributed computing system enabled by

trusted computing platform," International Conference On

Computer Design and Applications, Qinhuangdao, pp. V5-

576-V5-580, doi: 10.1109/ICCDA.5541169.

[11]. T. Ramji, B. Ramkumar and M. S. Manikandan,

"Resource and subcarriers allocation for OFDMA based

wireless distributed computing system," IEEE International

Advance Computing Conference (IACC), Gurgaon, India,

pp. 338-342, doi: 10.1109/IAdCC.6779345.

[12]. S. K. Dhurandher, A. Aggarwal, A. Bhandari, A.

Verma, M. S. Obaidat and I. Woungang, "Time Stamp-Based

Algorithm for Task Scheduling in a Distributed Computing

System with Multiple Master Multiple Slave Architecture,"

International Conference on Internet of Things and 4th

International Conference on Cyber, Physical and Social

Computing, Dalian, China, pp. 67-73, doi:

10.1109/iThings/CPSCom.105.

[13]. X. Chen, S. M. Hasan, T. Bose and J. H. Reed,

"Crosslayer resource allocation for wireless distributed

computing networks," IEEE Radio and Wireless Symposium

(RWS), New Orleans, LA, USA, pp. 605-608, doi:

10.1109/RWS.2010.5434191.

[14]. R. Cushing, G. H. H. Putra, S. Koulouzis, A. Belloum,

M. Bubak and C. de Laat, "Distributed Computing on an

Ensemble of Browsers," in IEEE Internet Computing, vol.

17, no. 5, pp. 54-61, Sept.-Oct. doi: 10.1109/MIC.3.

[15]. Q. -S. Hua et al., "Nearly Optimal Distributed

Algorithm for Computing Betweenness Centrality," IEEE

36th International Conference on Distributed Computing

Systems (ICDCS), Nara, Japan, pp. 271- 280, doi:

10.1109/ICDCS.89.

https://ijrset.in/index.php/ijrset/issue/view/92

